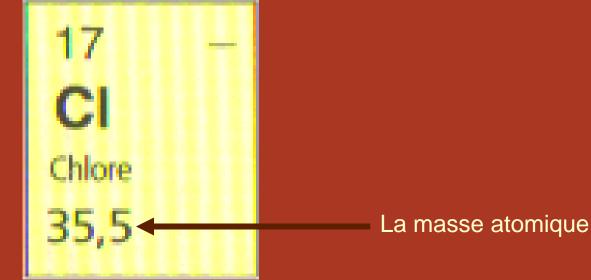
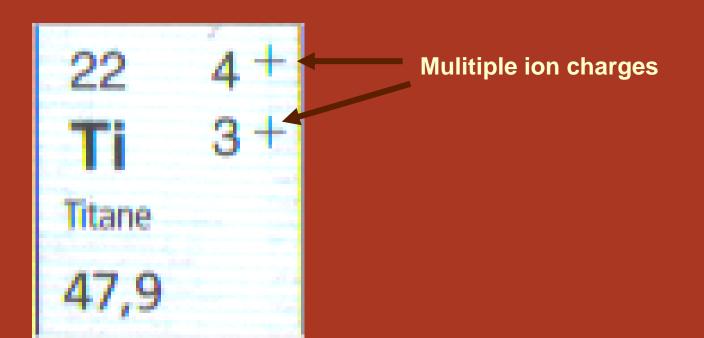

The Periodical Table of Elements



• Indicates the number of protons present in the element's nucleus.


<u>The Atomic Mass</u>

- The mass of an average atom of an element
- Always written in a decimal number and is measured in the atomic mass unit (amu)

<u>The lon Charge</u>

- Is an electric charge that forms on an atom when it gains or loses electrons
- Some elements may possess <u>multiple</u> ion charges

<u>The lon :</u>

- An electrically charged atom
- An ion that loses electrons is positively charged (cation)
- An ion that gains electrons is negatively charged (anion)

- Possess caracteristics of both metals and non-metals
 - Some conduct electricity, but poorly conduct heat

Group*** Period	1 IA 1A	2 IIA 2A	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8 VIII 8	9 VIII 8	10 VIII 8	11 IB 1B	12 IIB 2B	13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	18 VIIIA 8A
1	1 <u>H</u> 1.008	2.1	55	12	55	00	,2	Ŭ	Ŭ	Ŭ		20						2 <u>He</u> 4.003
2	3 <u>Li</u> 6.941	4 <u>Be</u> 9.012											5 10.81	6 <u>C</u> 12.01	7 <u>N</u> 14.01	8 <u>O</u> 16.00	9 <u>F</u> 19.00	10 <u>Ne</u> 20.18
3	11 <u>Na</u> 22.99	$\frac{12}{\underset{24.31}{\underline{Mg}}}$											13 <u>A1</u> 26.98	14 <mark>Si</mark> 28.09	15 <u>P</u> 30.97	16 <u>S</u> 32.07	17 <u>C1</u> 35.45	18 <u>Ar</u> 39.95
4	19 <u>K</u> 39.10	20 <u>Ca</u> 40.08	21 <u>Sc</u> 44.96	22 <u>Ti</u> 47.88	23 V 50.94	24 <u>Cr</u> 52.00	25 <u>Mn</u> 54.94	26 <u>Fe</u> 55.85	27 <u>Co</u> 58.47	28 <u>Ni</u> 58.69	29 <u>Cu</u> 63.55	30 <u>Zn</u> 65.39	31 <u>Ga</u> 69.72	32 Ge 72.59	33 A.S 74.92	34 <u>Se</u> 78.96	35 <u>Br</u> 79.90	36 <u>Kr</u> 83.80
5	37 <u>Rb</u> 85.47	38 <u>Sr</u> 87.62	³⁹ <u>Y</u> 88.91	40 <u>Zr</u> 91.22	41 <u>Nb</u> 92.91	42 <u>Mo</u> 95.94	43 <u>Tc</u> (98)	44 <u>Ru</u> 101.1	45 <u>Rh</u> 102.9	46 <u>Pd</u> 106.4	47 <u>Ag</u> 107.9	48 <u>Cd</u> 112.4	49 <u>In</u> 114.8	50 <u>Sn</u> 118.7	51 Sb 121.8	52 Te 127.6	53 <u>I</u> 126.9	54 <u>Xe</u> 131.3
6	55 <u>Cs</u> 132.9	56 <u>Ba</u> 137.3	*	72 <u>Hf</u> 178.5	73 <u>Ta</u> 180.9	74 <u>W</u> 183.9	75 <u>Re</u> 186.2	76 <u>Os</u> 190.2	77 <u>Ir</u> 190.2	78 <u>Pt</u> 195.1	79 <u>Au</u> 197.0	80 <u>Hg</u> 200.5	81 <u>T1</u> 204.4	82 <u>Pb</u> 207.2	83 <u>Bi</u> 209.0	84 <u>Po</u> (209)	85 <u>At</u> (210)	86 <u>Rn</u> (222)
7	87 <u>Fr</u> (223)	88 <u>Ra</u> (226)	**	104 <u>Rf</u> (261)	105 <u>Db</u> (262)	106 <u>Sg</u> (266)	107 <u>Bh</u> (264)	108 <u>Hs</u> (269)	109 <u>Mt</u> (268)	110 Ds (281)	111 <u>Rg</u> (272)	112 <u>Uub</u> (285)	113 <u>Uut</u> (284)	114 <u>Uuq</u> (289)	115 <u>Uup</u> (288)	116 <u>Uuh</u> (292)	<u>Uus</u>	118 <u>Uuo</u> (294)
Lanthanide Series* (Lanthanoid)			57 <u>La</u> 138.9	58 <u>Ce</u> 140.1	59 <u>Pr</u> 140.9	60 <u>Nd</u> 144.2	61 <u>Pm</u> (145)	62 <u>Sm</u> 150.4	63 <u>Eu</u> 152.0	64 <u>Gd</u> 157.3	65 <u>Tb</u> 158.9	66 Dy 162.5	67 <u>Ho</u> 164.9	68 <u>Er</u> 167.3	69 <u>Tm</u> 168.9	70 <u>Yb</u> 173.0	71 <u>Lu</u> 175.0	
Actinide Series** (Actinoids)			89 <u>Ac</u> (227)	90 <u>Th</u> 232.0	91 <u>Pa</u> (231)	92 <u>U</u> (238)	93 <u>Np</u> (237)	94 <u>Pu</u> (244)	95 <u>Am</u> (243)	96 <u>Cm</u> (247)	97 <u>Bk</u> (247)	98 <u>Cf</u> (251)	99 <u>Es</u> (252)	100 <u>Fm</u> (257)	101 <u>Md</u> (258)	102 <u>No</u> (259)	103 <u>Lr</u> (262)	

1 H	
3	4
Li	Be
11	12
Na	Mg
19	20
K	Ca
37	38
Rb	Sr
55	56
Cs	Ba

					He
5	6	7	8	9	10
B	C	N	O	F	Ne
13	14	15	16	17	18
Al	Si	P	S	CI	Ar
31	32	33	34	35	36
Ga	Ge	As	Se	Br	Kr
49	50	51	52	53	54
In	Sn	Sb	Te	I	Xe
81	82	83	84	85	86
TI	Pb	Bi	Po	At	Rn

0

All the metals appear on the left side of the periodic table.

All the non-metals (except hydrogen) appear on the right.

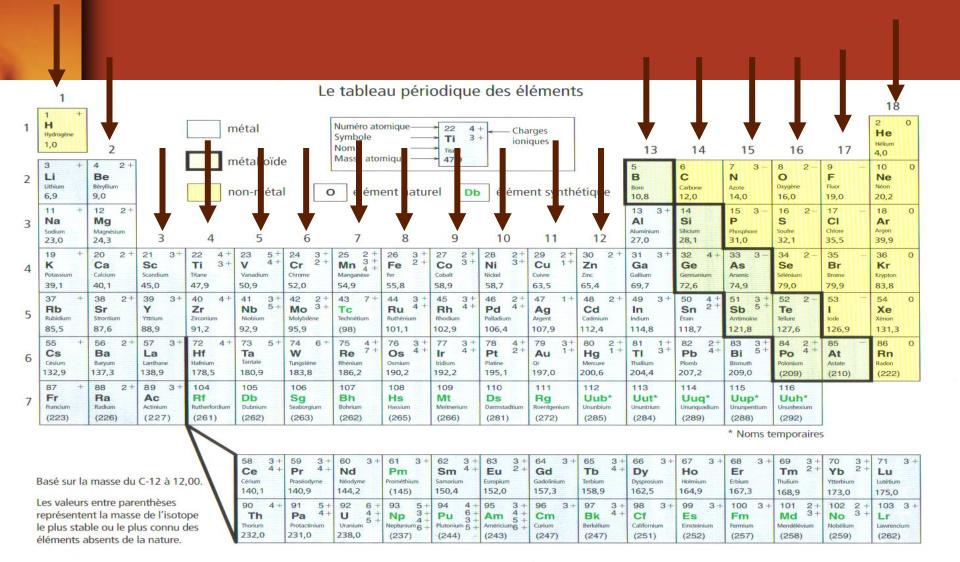
The metalloids form a diagonal line toward the right side.

These non-metals are all gases at room temperature.

Figure 2.14 The metals, non-metals, and metalloids as they appear in the periodic table

Periods

 Horizontal lines, numbered 1 to 7 ex : H and He make up the first period


Periods

	1									Le	tabl	eau	péri	odiqu	e des é	elément	ts							
1	1 + H Hydrogène 1,0		$\begin{array}{c c c c c c c c c c c c c c c c c c c $													18 2 0 He								
2	3 + Li Uthium	4 2- Be	+				nétal on-n				lom Aasse a		ue —	→ Titane → 47,9	Álór	ient synth	ótiquo	13 5 B Bore	14 6 C	15 7 3 - N Azote	16 8 2- 0	17 9 - F	4,0 10 0 Ne	-
3	6,9 11 + Na Sodium	9,0 12 2 Magnesium								0		men				,		10,8 13 3+	12,0 14 Silicium	14,0 15 3 Phosphore	16,0 16 2-	19,0 17 -	20,2 18 0 Argon	-
4	23,0 19 + K Potassium	24,3 20 2 Ca	3 + 21 Sc	3+	22 Ti	4 + 3 +	23 V	5+ 4+	24 Cr		7 25 2 Mn 4	+ 26 + F	8 3 + 2 +	9 27 2 Co 3	10 28 2 Ni 3	11 + 29 2+ + Cu 1+	12 30 2+ Zn	27,0 31 3+ Ga	28,1 32 4+ Ge	31,0 33 3 – As	32,1 34 2 <i>-</i> Se	35,5 35 – Br	39,9 36 0 Kr	-
5	39,1 37 + Rb	40,1 38 2	45,0 + 39	-	47,9 40	4+	50,9 41	3+ 5+	52,0 42	-	54,9 43 7	-	,8 4 3+ 4 4+	58,9 45 3 Ph 4	58,7 46 2 9d 4	63,5 + 47 1+	65,4 48 2+	69,7 49 3+	72,6 50 4 +	74,9 51 3+	79,0 52 2 -	79,9 53	83,8 54 0	_
	Rubidium 85,5 55 + Cs	Strong m 87,6 56 2 Pa	Yttrium 88,9 + 57 La	_	Zirconiu 91,2 72 Hf	Contra a	Niobiu 92,9 73 Ta	m 5 +	Molybden 95,9 74 W	6+	rechnétium (98) 75 4 Re 7	+ 7	hénium 1,1 6 3 + 9 4 +	Rhodium 102,9 77 3 Ir 4	Palladium 106,4 + 78 4 + Pt 2		Cadmium 112,4 80 2+ Hg 1+	Indium 114,8 81 1+ TI 3+	Etain 118,7 82 2+ Pb 4+	Antimoine 121,8 83 3+ Bi 5+	Tellure 127,6 84 2+ Po 4+	lode 126,9 85 At	Xénon 131,3 86 0 Rn	-
6	Césium 132,9 87 +	137,3 88 2	138,9	3+	178, 104	_	180,9 105	9	183,8 106		186,2 107	19	0,2 08	192,2 109	195,1 110	197,0 111	200,6	204,4 113	207,2 114	209,0 115	(209) 116	(210)	(222)	
7	Fr Francium (223)	Radia (226)	Actinium (227		Ruther		Dubnic (262		Seaborgiu (263)	um	Bohrium (262)		ssium :65)	Meitnerium (266)	Darmstadtiur (281)	Roentgenium (272)	Ununbium (285)	Ununtrium (284)	Ununquadium (289)	Ununpentium (288)	Ununhexium (292)			
* Noms temporaires $\begin{array}{c c c c c c c c c c c c c c c c c c c $																								
Basé sur la masse du C-12 à 12,00. Cérium Prosedorme Nodyme Promethium Samartum Europum Goldinium Terlaim Dysproxim Terlaim Dysproxim Terlaim Tombur Terlaim Tualinn Tualinn Ymethum Lutelum 140,1 140,9 144,2 (145) 150,4 152,0 157,3 158,9 162,5 164,9 167,3 168,9 173,0 175,0																								
représentent la masse de l'isotope le plus stable ou le plus connu des éléments absents de la nature.							90 Th Thoriur 232,	n	91 Pa Protactin 231,0	4 + ium	92 6 U 4 Uranium 238,0	+ Nep	3 5+ 1p 3+ 4+ 4+ 237)	94 4 Pu 6 Plutonium 5 (244)	+ 95 3 + Am 4 5 Américium6 (243)	+ 96 3 - + Cm + Curium (247)	97 3 + Bk 4 + Berkélium (247)	98 3+ Cf Californium (251)	- 99 3 + Es Einsteinium (252)	100 3 + Fm Fermium (257)	101 2 + Md 3 + Mendélévium (258)	102 2 + No ^{3 +} Nobělium (259)	103 3 + Lr Lawrendium (262)	

Families

- Columns numbered 1 to 18
- Sorted into groups which possess similar chemical properties

Families

Alkali metals

– sort, shiny and silver – Ex: Lithium, sodium, potassium, etc.

Figure 2.16 Les métaux alcalins sont mous et très réactifs.

Is it possible to create a Francium bomb?

- Consider that :
 - » Francium's half life is about 22 minutes
 - » Francium forms and decomposes constantly
 - » There is only about 20-30 grams of Francium on Earth at a time

<u>Alkaline Earth Metals</u>

- → shiny, silver and a bit more robust than alkani
- \rightarrow Béryllium, magnesium, calcium, etc

Figure 2.17 Le calcium (A) et le magnésium (B) sont des métaux alcalino-terreux.

Halogens

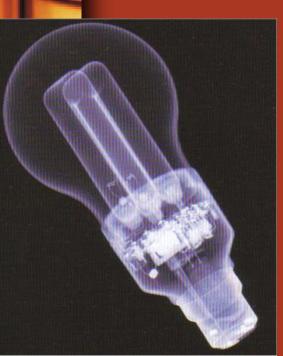

- →non-metals
- →toxic
- →React with alkali metals to form salts
- Fluorine, chlorine, bromine, iodine...

Figure 2.18 Les halogènes : le fluor (A), le chlore (B), le brome (C) et l'iode (D)

- → the most stable and unreactive in the table
- \rightarrow Helium, neon, argon, krypton...

